TETRALUDINS D TO N, ELEVEN NEW MELAMPOLIDES FROM TETRAGONOTHECA LUDOVICIANA

Leovigildo Quijano,* Errol J. Olivier and Nikolaus H. Fischer†

Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, U.S.A.

(Received 2 November 1979)

Key Word Index—Tetragonotheca ludoviciana; Compositae; Heliantheae; melampolides; sesquiterpene lactones.

Abstract—Eleven new melampolides, tetraludins D-N, were isolated from aerial parts of Tetragonotheca ludoviciana. Tetraludins D and E, F and G, J and K, and L and M represented epimeric pairs which differed only at one chiral centre of the five-carbon ester side chain at C-8. In benzene-d₆, the ¹H NMR spectra of the diastereomeric pairs of melampolides exhibited well-separated signals in particular for the absorptions due to the ester side chains that differed in chirality.

INTRODUCTION

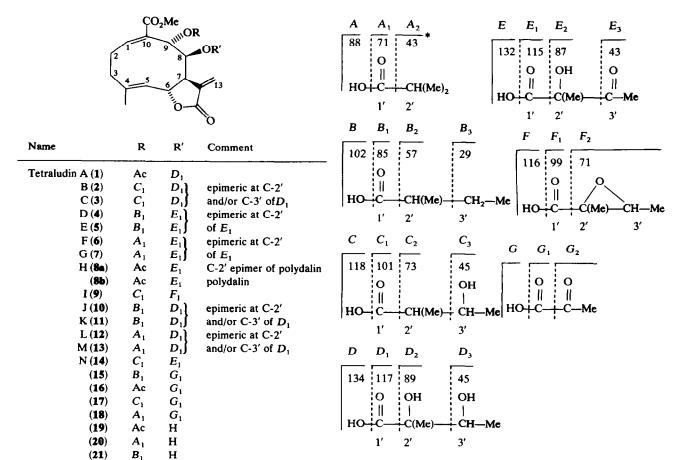
In continuation of our biochemical systematic study within the family Compositae we have further investigated Tetragonotheca ludoviciana of the subtribe Heliantheneae. In addition to the previously described tetraludins A-C [1], eleven new melampolides, tetraludins D-N, were isolated from the aerial parts of the plant. All new compounds had the same medium ring skeleton and they differed only in the type of ester side chains at C-8 and C-9. A number of compounds existed as non-separable diastereomeric mixtures which were successfully analysed by ¹H NMR spectroscopy in benzene-d_n. The structures of the new compounds were established by ¹H NMR spectroscopy including extensive spin-decoupling experiments as well as by MS and chemical transformations.

RESULTS AND DISCUSSION

The two diastereomeric mixtures, tetraludin D (4)–E (5), $(C_{26}H_{34}O_{10})$ and F (6)–G (7), $(C_{25}H_{32}O_{10})$ exhibited very distinct ¹H NMR absorptions that were nearly identical with those of the medium ring portion of tetraludin A (1) [1] and differed only in the signals due to the ester side chains at C-8 and C-9.

Tetraludin D (4), $C_{26}H_{34}O_{10}$, mp 139–140°, was obtained after repeated chromatography as a pure compound which exhibited ¹H NMR signals characteristic of the medium ring as summarized in Table 2. In CDCl₃, the signals due to H-5 and H-6 near 5 ppm represented a second order pattern which was clearly resolved into a broadened doublet at δ 4.46(H-5, J=

10 Hz) and a triplet at 4.95 (H-6) when run in C_6D_6 . Further ¹H NMR signals of 4 were characteristic for the 2-methylbutyrate (B_1) [triplet at 0.82, doublet at 1.04 (J = 7.0 Hz)] and 2-methyl-2-hydroxy-3-ketobutyrate (E_1) with ¹H NMR methyl singlets at 1.50 and 2.14 [1]. Further evidence for the presence of the above two ester functions in 4 was provided by diagnostic MS peaks (Table 4).


Tetraludin E (5), $C_{26}H_{34}O_{10}$, mp 132-133° exhibited ¹H NMR signals nearly identical with 4 when run in CDCl₃. However, in C₆D₆ the ¹H NMR absorptions due to the ester side chains B and E showed distinct differences suggesting that 4 and 5 represent isomers either by the difference in attachments (B at C-8 and E at C-9 and vice versa) or due to a difference in chirality at C-2' of B and/or C-2' of E. Periodate oxidation of a mixture of 4 and 5 (Scheme 1) provided the pyruvate 15 which upon selective hydrolysis with NaHCO₃ in ether gave the alcohol 21 in which the C-8 proton absorption had shifted upfield by about 1 ppm. These conversions not only showed that in 4 and 5 the ester side chain B is attached to the respective C-9 positions and E to C-8, but also that the difference between 4 and 5 is due to the opposite chirality at C-2' of E since both 4 and 5 formed one pyruvate (15).

Tetraludin F (6) and G (7) represented a mixture which could not be completely separated from 4 and 5. The ¹H NMR spectrum together with the diagnostic MS peaks (Table 4) indicated that 6 and 7 differed from 4 and 5 by the attachment of an isobutyrate moiety (A₁) to C-9 in 6 and 7. Conversion of a mixture of 4, 5, 6 and 7 to the pyruvate mixture 15 and 18 and subsequent hydrolysis to alcohols 20 and 21 established the structures of 6 and 7 by the same arguments applied for 4 and 5.

Tetraludin H (8a), $C_{23}H_{28}O_{10}$, mp 172-173°, which

^{*} Permanent address: Instituto de Quimica, UNAM Mexico City, Mexico.

[†] To whom correspondence should be addressed.

^{*} Indicates observed MS fragmentations (see Table 3).

Scheme 1. Oxidation-Hydrolysis of tetraludins.

Table 1. Physical data of tetraludins A-N*

Compou	Empirical nd formula	mp	CD, c	CD, λ_{\max}^{MeOH} , $nm([\theta])$	IR, $\nu_{\rm max}{\rm cm}^{-1}$
1	C ₂₃ H ₃₀ O ₁₀	gum	1.6×10 ⁻⁴	$213(-4.4\times10^4), 260(-1.2\times10^3)$	3500, 1760, 1740, 1715, 1665, 1625
2	$C_{26}H_{36}O_{11}$	164-165	8.0×10^{-5}	$214(-1.0\times10^5), 260(-2.6\times10^3)$	3450, 1765, 1740, 1715, 1665, 1620
3	$C_{26}H_{36}O_{11}$	172-173	3.5×10^{-5}	$214(-1.2 \times 10^5), 260(-3.6 \times 10^3)$	3500, 1765, 1735, 1715
4	$C_{26}H_{34}O_{10}$	139-140	6.5×10^{-5}	$215(-7.6\times10^4), 265(-1.6\times10^3)$	3500, 1765, 1735, 1725, 1720 sh
5	$C_{26}H_{34}O_{10}$	132-133	6.5×10^{-5}	$212(-1.1\times10^5), 265(-3.1\times10^3)$	3520, 1760, 1735, 1722
8a	$C_{23}H_{28}O_{10}$	172-173	1.0×10^{-4}	$215(-1.1\times10^4), 270(-2.3\times10^3)$	3500, 1760, 1735, 1720, 1705
9	$C_{26}H_{34}O_{10}$	gum	2.6×10^{-4}	$226(-4.8 \times 10^4), 265(-2.7 \times 10^3)$	3530, 1760, 1725, 1715, 1710
10	$C_{26}H_{36}O_{10}$	171-172	6.5×10^{-5}	$215(-8.3 \times 10^4), 260(-1.6 + 10^3)$	3520, 1760, 1735, 1720, 1715
11	$C_{26}H_{34}O_{11}$	gum	1.2×10^{-4}	$224(-1.1\times10^5), 270(-5\times10^3)$	3500, 1760, 1730 sh, 1720, 1715 sh

^{*} UV spectra run in MeOH showed strong end absorptions.

co-occurred with polydalin (8b) [2] exhibited 1H NMR signals in C_6D_6 solution that were distinctly different from 8b again suggesting a pair of positional isomers or structural isomers at C-2' of side chain E in 8a and 8b. Periodate oxidation of a mixture of 8a and 8b provided compound 16 which was identical with the pyruvate that had been previously obtained from 1 [1], suggesting that 8a and 8b differ by opposite chirality at C-2' of E. Tetraludin E was also shown to be identical with the oxidation product of tetraludin E (1). Since 1 was shown to bear an acetate function at C-9 [1] this correlation verified the structural assignment for 8a.

Tetraludin I (9), $C_{26}H_{34}O_{10}$, exhibited ¹H NMR and MS patterns that indicated the same medium ring skeleton as the other tetraludins but contained the ester side chains 3-hydroxy-2-methylbutyrate (C_1) and epoxyangelate (F_1) . The positions of the two ester moieties could not be established but by correlation with the other tetraludins which have the 2'-3'-

dioxygenated ester moiety at C-8 we tentatively assign structure 9 to tetraludin I.

Tetraludin J (10), $C_{26}H_{36}O_{10}$, mp 171–172°, showed ¹H NMR and MS parameters which indicated 2methyl-2,3-dihydroxybutyrate (D_1) and 2-methylbutyrate (B_1) moieties in the molecule. The relationships of 10 and 11, 12 and 13 were the same as previously described for the tetraludin D-G series. Periodate oxidation of a mixture of 10-13 provided a mixture of 15 and 18 with 2-methylbutyrate signals, a doublet (J = 7 Hz) at 1.01 and a triplet (J = 7 Hz) at 0.75 and isobutyrate methyl doublets (J = 7 Hz) at 1.03 and 1.04 plus a pyruvate methyl singlet at 2.39. Selective saponification with NaHCO₃ of the mixture of 15 and 18 resulted in a mixture of alcohols 20 and 21 with a C-8 proton absorption centered at 5.17 suggesting the presence of the OH group at C-8 in 20 and 21 and therefore the attachment of the fivecarbon ester D_1 to C-8 in 10-13 and B_1 in 10 and 11 as well as A_1 in 12 and 13 to C-9.

Table 2. 1H NMR data of tetraludins D-N and derivatives*

Compound	4	5 ‡	8a	86	9	10‡	14	15	20	Multiplicity (J-values in Hz)
H-1	6.96 (6.6)†	6.97 (6.69)	7.00 (6.70)	7.00 (6.71)	7.00 (6.72)	6.96 (6.70)	6.97 (6.72)	7.01	6.96	dd(10,8)
H-5)	(4.46)	4.90 (4.50)	4.91 (4.51)	4.91 (4.49)	4.93 (4.53)	4.94 (4.54)	(4.53)	4.94	4.90	brd (10)
}	4.8-5.1					} ·	1.8-5.1			
н-6 Ј	(4.95)	5.09 (5.17)	5.18 (5.16)	5.07 (4.96)	5.14 (5.15)	5.10 (5.09)	(5.00)	5.18	5.23	t(10)
H-8	6.60 (6.81)	6.59 (6.82)	6.58 (6.82)	6.61 (6.85)	6.67 (6.90)	6.63 (6.85)	6.57 (6.83)	6.69		dd (8.5,1.5)
								}	5.17	
H-9	5.25 (5.31)	5.32 (5.39)	5.35 (5.41)	5.29 (5.35)	5.28 (5.36)	5.38 (5.39)	5.32 (5.40)	5.36		d(8.5)
H-13a	6.26 (6.18)	6.23 (6.20)	6.27 (6.21)	6.28 (6.21)	6.30 (6.22)	6.28 (6.24)	6.25 (6.23)	6.27	6.33	d(3.5)
H-13b	5.76 (5.66)	5.70 (5.65)	5.71 (5.66)	5.77 (5.69)	5.78 (5.70)	5.75 (5.70)	5.75 (5.70)	5.76	5.61	d(3.2
C-4-Me	1.95 (1.71)	1.98 (1.76)	1.97 (1.76)	1.97 (1.73)	2.00 (1.72)	2.00 (1.73)	1.95 (1.75	2.02	1.95	d/brs(1.2)
C-2'-Me	1.50 (1.29)	1.47 (1.41)	1.48 (1.40)	1.50 (1.30)	1.49 (1.34)	1.19 (1.05)	1.50 (1.47)	2.40	_	s
C-3'-Me	2.14 (1.77)	2.15 (1.89)	2.16 (1.90)	2.16 (1.79)	1.24 (1.05)	1.18 (1.03)	2.16 (1.88)	_	_	d/s(6.5)
H-3'					3.00 (2.51)	3.85 (3.79)		_	_	q(6.5)
C-2"-Me	1.40 (0.97)	1.04 (0.94)			1.06 (0.89)	1.06 (1.01)	1.02 (0.87)	1.02	1.10	d(7)
C-3"-Me	0.82 (0.74)	0.82 (0.70)			1.15 (0.94)	0.82 (0.76)	1.15 (0.97)	1.06	0.88	d/t(7)
H-3"					4.88 (3.70)		3.80 (3.78)			m
H-2"	2.18 sext	2.16 sext			2.33 (2.22)		(2.28)	2.32		m
COOMe	3.78 (3.42)	3.78 (3.44)	3.79 (3.41)	3.79 (3.41)	3.79 (3.45)	3.80 (3.44)	4.78 (3.46)	3.79	3.75	S
OAc			1.97 (1.61)	1.97 (1.67)				_	_	_

^{*} Run at 100 MHz in CDCl₃ with TMS as internal standard. Values are in ppm (δ) relative to TMS.

[†] Values in parentheses are δ values determined in C_6D_6 .

[‡] Signals due to the two C-2'-Me of the isobutyrate moiety in CDCl₃ appeared at δ 1.08 and 1.06 (d, J = 7.0 Hz) in 6 and 7, at 1.03 and 1.04 (d, J = 7.0 Hz) in a mixture of 15 and 18 and a mixture of 10, 11, 12 and 13, respectively.

Table 3.	Mass	spectral	data du	e to	fragmentations

				•		Ū
	4		6 and 7		8a and 8b	
M ⁺	506†(6.6)‡		492(3.2)		464(2.2)	
M-R-OH	_		_		_	
$M-R_1OH$	375(3.7)	M-E-H	361(5.3)	M-E-H	333(9.1)	M-E-H
R ₁ -fragments	131(4.3)	E-H	131(5.3)	E-H	131(10.2)	E-H
	115(3.6)	$\boldsymbol{E_1}$	115(2.1)	\boldsymbol{E}_1	115(11)	E_1
	113(1.2)	$E-H-H_2O$	113(2.1)	E-H-H ₂ O	113(2.4)	E-H-H ₂ O
	97(7.0)	$E_1 - H_2O$	97(10)	$E_1 - H_2O$	97(24)	$E_1 - H_2O^2$
	87(9.0)	E_2	87(2.1)	E,	87(25.4)	Ε,
	69(11.2)	$E_2 - H_2O$	69(6.3)	$E_2 - H_2O$	69(25)	$E_{2}^{2} - H_{2}O$
	43(17.3)	E_3			, ,	2 2
R-fragments	101(2.0)	B – H	87(2.1)	A – H	43	Ac
· ·	85(59)	\boldsymbol{B}_1	71(16)	A_1		
		•	43(16)	A_2		
Miscellaneous	464(9.1)	M-CH ₂ CO	450(4.2)	M-CH ₂ CO	422(17.6)	M-CH ₂ CO

^{*} MS data were obtained at 70 eV by a direct inlet probe.

Tetraludin N (14), $C_{26}H_{34}O_{11}$, exhibited ¹H NMR and MS signals that indicated the presence of 2-methyl-3-hydroxybutyrate (C_1) and 2-methyl-2-hydroxy-3-ketobutyrate (E_1) . Periodate oxidation of 14 provided the pyruvate (17) which was identical with the degradation product obtained from tetraludin B (2) [1]. Selective hydrolysis of compound 17 with NaHCO₃ in ether had previously been established that side chains E_1 and C_1 are attached to C-8 and C-9, respectively, thus showing that structure 14 can be assigned to tetraludin N.

The above data clearly demonstrate that ester side chains with chiral centers that are attached to a terpenoid skeleton may vary in the chirality of the side chain at one center or more. The commonly used physical methods (IR, MS and also ¹H NMR in CDCl₁) may not detect the presence of a dias-

tereomeric mixture and might suggest a pure compound. In the tetraludin series obtaining ¹H NMR spectra in C₆D₆ caused the diastereomeric pairs of melampolides to exhibit well-separated signals most dramatically for the proton absorptions due to the ester side chains which differed in chirality.

EXPERIMENTAL

Tetragonotheca ludoviciana (T. and G.) Gray; was collected in August 1977 at Tarrant Co., Texas (Bacon and Bragg 1652, voucher at The University of Texas at Arlington). Dried leaves (582 g) were extracted and worked up as previously described [3], providing 9.0 g of crude syrup which was chromatographed over 250 g Si gel using CHCl₃ and mixtures of CHCl₃-Me₂CO (2.5, 5.0, 10.0, 20.0, 40.0 and

Table 4. Mass spectral fragments of the medium ring portion of tetraludins*

m/e	Assignments	4	6 and 7	8a and 8b	9	10	12	14
362	$C_{19}H_{22}O_7$	14.9†	12.6	16.0	2.2	14.8	17.8	25.6
291	$C_{16}H_{18}O_5$	34.8	31.6	39.9	19.4	29.3	27.5	82.7
274	$C_{16}H_{18}O_4$	22.6	21.1	26.2	11.1	16.8	16.1	32.1
273	$C_{16}H_{17}O_4$	56.5	49.5	57.9	59.4	41.2	40.0	100.0
272	$C_{16}H_{16}O_{4}$	100.0	100.0	100.0	100.0	100.0	100.0	67.5
259	$C_{15}H_{15}O_4$	32.0	27.4	55.3	33.9	25.3	26.7	59.6
258	$C_{15}H_{14}O_4$	14.0	4.2	17.9	10.0	13.7	13.1	15.2
242	$C_{15}H_{14}O_3$	19.7	11.6	24.9	7.8	10.2	9.2	23.4
241	$C_{15}H_{13}O_3$	25.8	21.1	29.8	25.6	15.1	10.6	46.0
240	$C_{15}H_{12}O_3$	24.2	20.0	28.9	27.8	20.7	16.4	21.4
214	$C_{14}H_{14}O_2$	14.8	11.6	20.4	10.0	10.8	11.1	19.9
213	$C_{14}H_{13}O_2$	45.6	14.1	67.4	56.1	40.2	36.7	58.8
212	$C_{14}H_{12}O_2$	24.2	22.1	34.4	27.8	22.4	21.7	25.1

^{*} MS data were obtained at 70 eV by direct inlet probe.

[†] Numbers denote observed m/e values for fragment ions.

[‡] Numbers in parentheses denote relative intensities of observed ions.

[†] Numbers denote relative intensities of observed ion peaks.

involving the	he es	ter side	chains	of 1	the	tetraludins*
---------------	-------	----------	--------	------	-----	--------------

9		10		12		14	
506(6.1)		508(2.1)		494(2.8)		522(3.8)	
388(5)	M-C					405(4.8)	M-C-H
		375(2.7	M-D-H	361(2.8)	M-D-H	319(4.9)	M-E-H
115(2.8)	F-H	133(6.5)	D – H	133(7.8)	D-H	131(9.5)	E-H
99(18.3)	F_1	117(3.4)	D_1	117(4.4)	D_1	115(5.4)	$\boldsymbol{E_1}$
71(15.6)	$\dot{F_2}$	115(2.8)	D-H-H ₂ O	115(5.0)	D-H-H ₂ O	113(1.4)	$E-H-H_2O$
` ,	•	99(2.7)	$D_1 - H_2O^2$	99(1.4)	$D_1 - H_2O$	97(5.5)	$E_1 - H_2O$
		89(17.6)	D,	89(19.4)	D_2	87(7.1)	E_2
		81(13.0)	$D_1 - 2H_2O$	81(10)	$D_1 - 2H_2O$	69(3.3)	$E_2 - H_2O$
		71(18.4)	$D_2 - H_2O$	71(33)	$D_2 - H_2O$		
		53(4.8)	$D_{2}^{2} - 2H_{2}O$	53(2.8)	$D_2 - 2H_2O$		
101(16.1)	C_1	101(1.6)	В-Н	87(1.7)	A-H	117(5.5)	C-H
100(45.6)	С-Н ₂ О	85(81)	\boldsymbol{B}_1	71(33)	A_{t}	101(8.3)	C_1
99(7.2)	C-H-H ₂ O	57(84)	$\vec{B_2}$	43(14)	A_2	99(1.5)	C−H−H ₂ O
83(18.3)	$C_1 - H_2O$	` ,	2		•	83(11.5)	$C_1 - H_2O^2$
55(17.8)	$C_2 - H_2$ O					55(4.4)	$C_2 - H_2O$
490(2.2)	M-16	43(18)	C ₃ H ₇			480(2.4)	M-CH₂CO
. ,,		, -,	. ,			391(4.9)	$M \sim (E - H)$
						373(3.7)	$M-(E-H-H_2O)$

80.0%) as eluant; 250 ml fractions were taken and all fractions were monitored by TLC.

Fractions 16-17, 18-19 and 22-24 contained 1, 2 and 3, respectively [1]. Rechromatography of less-popular fractions permitted the isolation of the new tetraludins. Fraction 11 (150 mg) when rechromatographed on 30 g Si gel using mixtures of petrol-Et₂O (5, 10, 20, 40, 80% Et₂O) as eluant (25 ml fractions), provided after further purification by TLC 40 mg of pure 4. Subsequent fractions contained a mixture of 4 and 5 (25 mg) followed by mixtures of 6 and 7 (30 mg). Later fractions contained mixtures (30 mg) of 8a and 8b and 9 which were further separated by PLC. Rechromatography of fractions 12 and 13 of the original chromatographic run over Si gel and subsequent PLC separations gave pure 10 (8 mg) plus mixtures (25 mg) of 10 and 12 as well as 11 and 13. Fractions 14 and 15 of the first CC run provided after repeated TLC separations pure 14 (20 mg) The physical data of the new compounds are summarized in Tables 1-4.

Periodate oxidations and selective hydrolyses. A mixture (20 mg) of tetraludins D-G (4-7) was treated with H_5IO_6 in Et_2O and worked up as previously described [1] to give a mixture (12 mg) of 15 and 18. Periodate oxidation of a

mixture (15 mg) of **8a** and **8b** gave **16** (8 mg) which was identical by ¹H NMR and IR with the pyruvate derivative derived from **1** [1]. A mixture of (12 mg) of tetraludins J-M (**10-13**) gave upon H₅IO₆ oxidation a mixture of **15** and **18**. Hydrolysis with NaHCO₃ by our previously described method [1] provided a mixture (5 mg) of **20** and **21**. Periodate oxidation of **14** (15 mg) resulted in **17** (10 mg) with ¹H NMR parameters identical with the product obtained from **2** [1].

Acknowledgements—This work was supported by Grant Number 1-RO1-CA19800, awarded by the National Cancer Institute, DHEW. The authors wish to thank Drs. L. Urbatch and J. Bacon for plant collections and identification of the plant material.

REFERENCES

- Quijano, L., Bloomenstiel, D. and Fischer, N. H. (1979) Phytochemistry 18, 1529.
- 2. Herz, W. and Bhat, S. V. (1970) J. Org. Chem. 35, 2605.
- Fischer, N. H., Wiley, R. A., Lin, H. N., Karimian, K. and Politz, S. M. (1975) Phytochemistry 14, 2241.